System Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Tunneling Field-Effect Transistor: Effect of Strain and Temperature on Tunneling Current

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Peng-Fei Guo ; Dept. of Electr. & Comput. Eng., Nat. Univ. of Singapore, Singapore, Singapore ; Li-Tao Yang ; Yue Yang ; Lu Fan
more authors

We report the first study of the effect of strain on tunneling field-effect transistor (TFET) characteristics. Double-gate silicon TFETs were employed. It was found that tensile strain increases the drain current, whereas compressive strain reduces the drain current. This is attributed to strain-induced band splitting and carrier repopulation and provides guidelines on strain engineering of TFETs. An elaborate study of the dependence of the electrical characteristics of TFET on temperature is also reported. It was observed that on-state tunneling current exhibits a positive temperature dependence at low drain bias condition (V DS = 1 V), whereas opposite behavior was observed when V DS = 1.5 V. When the device temperature is increased, enhancement of the drain current at V DS = 1 V results from band gap narrowing, whereas reduction in the drain current at V DS = 1.5 V is attributed to the decrease in the electric field at the tunneling junction.

Published in:

Electron Device Letters, IEEE  (Volume:30 ,  Issue: 9 )