By Topic

An Integrated Micro-Fluxgate Magnetic Sensor With Front-End Circuitry

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Baschirotto, A. ; Dept. of Innovation Eng., Univ. of Lecce, Lecce, Italy ; Dallago, E. ; Malcovati, P. ; Marchesi, M.
more authors

In this paper, a double-axis planar micro-fluxgate magnetic sensor and its front-end circuitry are presented. The ferromagnetic core material, i.e., the Vitrovac 6025 X, has been deposited on top of the coils with the dc-magnetron sputtering technique, which is a new type of procedure with respect to the existing solutions in the field of fluxgate sensors. This procedure allows us to obtain a core with the good magnetic properties of an amorphous ferromagnetic material, which is typical of a core with 25-mum thickness, but with a thickness of only 1 mum, which is typical of an electrodeposited core. The micro-Fluxgate has been realized in a 0.5- mum CMOS process using copper metal lines to realize the excitation coil and aluminum metal lines for the sensing coil, whereas the integrated interface circuitry for exciting and reading out the sensor has been realized in a 0.35-mum CMOS technology. Applying a triangular excitation current of 18 mA peak at 100 kHz, the magnetic sensitivity achieved is about 10 LSB/muT [using a 13-bit analog-to-digital converter (ADC)], which is suitable for detecting the Earth's magnetic field (plusmn60 muT), whereas the linearity error is 3% of the full scale. The maximum angle error of the sensor evaluating the Earth magnetic field is 2deg. The power consumption of the sensor is about 13.7 mW. The total power consumption of the system is about 90 mW.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:58 ,  Issue: 9 )