By Topic

Layered Graph Matching with Composite Cluster Sampling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Liang Lin ; Sun Yat-Sen University, Guangzhou ; Xiaobai Liu ; Song-Chun Zhu

This paper presents a framework of layered graph matching for integrating graph partition and matching. The objective is to find an unknown number of corresponding graph structures in two images. We extract discriminative local primitives from both images and construct a candidacy graph whose vertices are matching candidates (i.e., a pair of primitives) and whose edges are either negative for mutual exclusion or positive for mutual consistence. Then we pose layered graph matching as a multicoloring problem on the candidacy graph and solve it using a composite cluster sampling algorithm. This algorithm assigns some vertices into a number of colors, each being a matched layer, and turns off all the remaining candidates. The algorithm iterates two steps: 1) Sampling the positive and negative edges probabilistically to form a composite cluster, which consists of a few mutually conflicting connected components (CCPs) in different colors and 2) assigning new colors to these CCPs with consistence and exclusion relations maintained, and the assignments are accepted by the Markov Chain Monte Carlo (MCMC) mechanism to preserve detailed balance. This framework demonstrates state-of-the-art performance on several applications, such as multi-object matching with large motion, shape matching and retrieval, and object localization in cluttered background.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:32 ,  Issue: 8 )