Cart (Loading....) | Create Account
Close category search window
 

A new RBF neural network with GA-based fuzzy C-means clustering algorithm for SINS fault diagnosis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zhide Liu ; Sch. of Autom., Beijing Inst. of Technol., Beijing, China ; Jiabin Chen ; Chunlei Song

In this paper, a new radial basis function (RBF) neural network with fuzzy c-means clustering algorithm based on genetic algorithm (GA) is proposed for the fault diagnosis of gyroscopes and accelerometers of strapdown inertial navigation system (SINS). The fuzzy c-means algorithm (FCM) tends to fall into the local optimum. The fuzzy c-means clustering algorithm combined with GA (FGA) obtains the global optimal cluster centers. FGA is used to provide the optimal cluster centers for RBF neural network, and a second order learning algorithm is used to train the parameters and weights of RBF neural network. Experimental results show that the proposed RBF neural network with FGA quickly converges and effectively improves the diagnostic accuracy rate of SINS fault diagnosis.

Published in:

Control and Decision Conference, 2009. CCDC '09. Chinese

Date of Conference:

17-19 June 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.