Cart (Loading....) | Create Account
Close category search window
 

Wavelet neural network applied to power disturbance signal in distributed power system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Huang Weili ; Hebei Univ. of Eng., Handan, China ; Du Wei

The power system load equipment is more sensitive to power quality disturbances than equipment applied in the past. Therefore, the electric supply quality has become a major concern of electric utilities and end-users. A novel approach to detect and locate power quality disturbance in distributed power system combining wavelet transform with neural network is proposed. By performing decomposition of transient waveform, the original signal is divided into two parts: the low-frequency and the high-frequency, corresponding to approximation part and details part respectively. The paper aims at complex wavelet analysis, and then explores feature extraction of disturbance signal to obtain dynamic parameters, superior to real wavelet analysis result. The characteristic vector obtained from wavelet decomposition coefficients are input data of neural network for power quality disturbance pattern recognition. The improved training algorithm is used to complete the network parameter identification. By means of simulation and experimental data, the disturbance pattern can be obtained from the neural network output. The simulation results show that the proposed method is effective for transient signal analysis, taking advantage of complex wavelet transform and neural network.

Published in:

Control and Decision Conference, 2009. CCDC '09. Chinese

Date of Conference:

17-19 June 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.