By Topic

An Online Adaptive Network Anomaly Detection Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xiaotao Wei ; Beijing Jiaotong Univ., Beijing, China ; Houkuan Huang ; ShengFeng Tian ; Xiaohui Yang
more authors

Proposed a novel online adaptive network anomaly detection model (OANAD). Purely normal dataset is not needed for training. It can process the network traffic data stream in real-time, alert the abnormal traffic, and dynamically build up its local normal pattern base and intrusion pattern base. The model has a relatively simple architecture which makes it efficient for processing online network traffic data. Also the detecting algorithms cost little computational time. The experiment on the KDD 99 intrusion detection datasets shows that our model achieves a detection rate of 90.51% and a false positive rate of only 0.19% within a very short running time.

Published in:

Computational Sciences and Optimization, 2009. CSO 2009. International Joint Conference on  (Volume:2 )

Date of Conference:

24-26 April 2009