By Topic

History, presence and future of gyrotrons

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Thumm, M. ; Assoc. EURATOM-FZK, Forschungszentrum Karlsruhe, Karlsruhe, Germany

Gyrotron oscillators (gyromonotrons) are mainly used as high power millimeter wave sources for electron cyclotron resonance heating (ECRH), current drive (ECCD), stability control and diagnostics of magnetically confined fusion plasmas. The maximum pulse length of commercially available 140 GHz, megawatt-class gyrotrons employing synthetic diamond output windows is 30 min (CPI and European FZK-CRPP-CEA-TED Collaboration), at 44% efficiency, employing a single-stage depressed collector for energy recovery. The Japan 170 GHz ITER gyrotron holds the energy world record of 2.88 GJ (0.8 MW, 60 min.) and the efficiency record of 55% at 1 MW, 800 s for tubes with an output power of more than 0.5 MW. The Russian 170 GHz ITER gyrotron achieved 0.83 MW with a pulse duration of 203 s. Russian gyrotrons for plasma diagnostics or spectroscopy applications deliver Pout = 40 kW with tau = 40 mus at frequencies up to 650 GHz (eta > 4%), and Pout = 0.5 kW at 1.3 THz (eta = 0.7%). Gyrotron oscillators have also been successfully used in materials processing and ECR multi-charged heavy ion sources. Such technological applications require gyrotrons with the following parameters: int > 24 GHz , Pout = 4-50 kW, CW, eta > 30%. This paper gives a short review of the history of gyrotrons, an update of the present experimental achievements and an outlook into future developments of multi-megawatt coaxial-cavity gyrotrons, frequency-step tunable gyrotrons and gyrotrons for specific technological and spectroscopic applications.

Published in:

Vacuum Electronics Conference, 2009. IVEC '09. IEEE International

Date of Conference:

28-30 April 2009