By Topic

Robust incorporation of anatomical priors into limited view tomography using multiple cluster modelling of the joint histogram

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Van de Sompel, D. ; Dept. of Eng. Sci., Univ. of Oxford, Oxford, UK ; Brady, M.

We apply the joint entropy prior to limited view transmission tomography and demonstrate its sensitivity to local optima. We propose to increase robustness by modelling the joint histogram as the sum of a limited number of bivariate clusters. The method is illustrated for the case of Gaussian distributions. This approximation increases robustness by reducing the possible number of local optima in the cost function. The resulting reconstruction prior mimicks the behaviour of the joint entropy prior in that it narrows clusters in the joint histogram, and yields promisingly accurate reconstruction results despite the null space problem.

Published in:

Biomedical Imaging: From Nano to Macro, 2009. ISBI '09. IEEE International Symposium on

Date of Conference:

June 28 2009-July 1 2009