By Topic

Validation of an automatic contour propagation method for lung cancer 4D adaptive radiation therapy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Peroni, M. ; Dept. of Bioeng., Politec. di Milano Univ., Milan, Italy ; Spadea, M.F. ; Riboldi, M. ; Baroni, G.
more authors

The objective of this work is to validate a fast and reliable 4D-based adaptive treatment planning procedure for the Radiation Oncology clinic. A non-rigid B-Spline based registration is performed between CT scans at different respiratory phases. Radiotherapy contours drawn on a reference phase are than propagated to the target phase. We present results from two novel validation methods: a validation study using a 4D anthropomorphic computational phantom, and a patient data analysis comparing auto-rater versus inter-rater variability. For the phantom study, the overlap was greater than 90%, while the diameter variation was 5.1% at exhale and 3.4% at inhale. For the patient dataset, pairwise auto-rater Dice coefficient values exceeded inter-rater values for 9 of 15 structures. Though subject to inaccuracies caused by residual motion artifacts, and manual contouring variations, the reliability of the method suggests it could be soon introduced in the clinical practice.

Published in:

Biomedical Imaging: From Nano to Macro, 2009. ISBI '09. IEEE International Symposium on

Date of Conference:

June 28 2009-July 1 2009