Cart (Loading....) | Create Account
Close category search window
 

Direct reconstruction of dynamic PET parametric images using sparse spectral representation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Guobao Wang ; Dept. of Biomed. Eng., Univ. of California, Davis, CA, USA ; Jinyi Qi

To generate parametric images for dynamic PET, direct reconstruction from projection data is statistically more efficient than conventional indirect methods that perform image reconstruction and kinetic modeling in two separate steps. Existing direct reconstruction methods often use nonlinear compartmental models, which require the knowledge of model order. This paper presents a direct reconstruction approach using a linear spectral representation and does not require model order assumption. A Laplacian prior is used to ensure sparsity in the spectral representation. The resultant maximum a posteriori (MAP) formulation is solved by an expectation maximization shrinkage algorithm. A bias correction step is developed to improve the MAP estimate. Computer simulations show that the proposed method achieves better bias-variance tradeoff than a conventional indirect method for estimating parametric images from dynamic PET data.

Published in:

Biomedical Imaging: From Nano to Macro, 2009. ISBI '09. IEEE International Symposium on

Date of Conference:

June 28 2009-July 1 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.