By Topic

A data-driven approach to prior extraction for segmentation of left ventricle in cardiac MR images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Xiao Jia ; Department of Electrical & Computer Engineering, National University of Singapore, 117576, Singapore ; Chao Li ; Ying Sun ; Ashraf A. Kassim
more authors

In this paper, we propose a data-driven approach that extracts prior information for segmentation of the left ventricle in cardiac MR images of transplanted rat hearts. In our approach, probabilistic priors are generated from prominent features, i.e., corner points and scale-invariant edges, for both endo- and epi-cardium segmentation. We adopt a level set formulation that integrates probabilistic priors with intensity, texture, and edge information for segmentation. Our experimental results show that with minimal user input, representative priors are correctly extracted from the data itself, and the proposed method is effective and robust for segmentation of the left ventricle myocardium even in images with very low contrast. More importantly, it avoids inter- and intra- observer variations and makes accurate quantitative analysis of low-quality cardiac MR images possible.

Published in:

2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro

Date of Conference:

June 28 2009-July 1 2009