By Topic

Segmentation of rodent brains from MRI based on a novel statistical structure prediction method

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

9 Author(s)
Jinghao Zhou ; Robert Wood Johnson Med. Sch., Cancer Inst. of New Jersey, Univ. of Med. & Dentistry of New Jersey, New Brunswick, NJ, USA ; Sukmoon Chang ; Shaoting Zhang ; Pappas, G.
more authors

Functional segmentation of brain images is important in understating the relationships between anatomy and mental diseases in brains. Volumetric analysis of various brain structures such as the cerebellum plays a critical role in studying the structural changes in brain regions as a function of development, trauma, or neurodegeneration. Although various segmentation methods in clinical studies have been proposed, most of them require a priori knowledge about the locations of the structures of interest, preventing the fully automatic segmentation. In this paper, we present a novel method for detecting and locating the brain structures of interest that can be used for the fully automatic functional segmentation of 2D rodent brain MR images. The presented method focuses on detecting the topological changes of brain structures based on a novel area ratio criteria. The mean successful rate of the detection method shows 89.4% accuracy compared to the expert-identified ground truth.

Published in:

Biomedical Imaging: From Nano to Macro, 2009. ISBI '09. IEEE International Symposium on

Date of Conference:

June 28 2009-July 1 2009