Cart (Loading....) | Create Account
Close category search window
 

Discriminative sliding preserving regularization in medical image registration

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ruan, D. ; Univ. of Michigan, Ann Arbor, MI, USA ; Esedoglu, S. ; Fessler, J.A.

Sliding effects often occur along tissue/organ boundaries. For instance, it is widely observed that the lung and diaphragm slide against the rib cage and the atria during breathing. Conventional homogeneous smooth registration methods fail to address this issue. Some recent studies preserve motion discontinuities by either using joint registration/segmentation or utilizing robust regularization energy on the motion field. However, allowing all types of discontinuities is not strict enough for physical deformations. In particular, flows that generate local vacuums or mass collisions should be discouraged by the energy functional. In this study, we propose a regularization energy that encodes a discriminative treatment of different types of motion discontinuities. The key idea is motivated by the Helmholtz-Hodge decomposition, and regards the underlying motion flow as a superposition of a solenoidal component, an irrotational component and a harmonic part. The proposed method applies a homogeneous penalty on the divergence, discouraging local volume change caused by the irrotational component, thus avoiding local vacuum or collision; it regularizes the curl field with a robust functional so that the resulting solenoidal component vanishes almost everywhere except on a singular set where the large shear values are preserved. This singularity set corresponds to sliding interfaces. Preliminary tests with both simulated and clinical data showed promising results.

Published in:

Biomedical Imaging: From Nano to Macro, 2009. ISBI '09. IEEE International Symposium on

Date of Conference:

June 28 2009-July 1 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.