By Topic

Concept detection in longitudinal brain MR images using multi-modal cues

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Caban, J.J. ; Univ. of Maryland, Baltimore County, Catonsville, MD, USA ; Lee, N. ; Ebadollahi, S. ; Laine, A.F.
more authors

Advances in medical imaging techniques and devices has resulted in increased use of imaging in monitoring disease progression in patients. However, extracting decision-enabling information from the resulting longitudinal multi-modal image sets poses a challenge. Radiologists often have to manually identify and quantify certain regions of interest in the longitudinal image sets, which bear upon the patient's condition. As the number of patients increases, the number of longitudinal multi-modal images grows, and the manual annotation and quantification of pathological concepts quickly becomes impractical. In this paper we explore how minimal annotations provided by the user at a few time points can be effectively leveraged to automatically annotate data in the entire multi-modal longitudinal image sets. In particular, we investigate the required number of annotated images per time point and across time for obtaining reasonable results for the entire image set, and what multi-modal cues can help boost the overall annotation results.

Published in:

Biomedical Imaging: From Nano to Macro, 2009. ISBI '09. IEEE International Symposium on

Date of Conference:

June 28 2009-July 1 2009