By Topic

Stochastic nonlinear system identification using multi-objective multi-population parallel genetic programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yuan Xiao-lei ; Dept. of Autom., North China Electr. Power Univ., Beijing, China ; Bai Yan

To realize simultaneous identification of both structures and parameters of stochastic nonlinear systems, multi-population parallel genetic programming (GP) was employed. Object systems were represented by nonlinear autoregressive with exogenous inputs (NARX) and nonlinear autoregressive moving average with exogenous inputs (NARMAX) polynomial models, multi-objective fitness definition was used to restrict sizes of individuals during the evolution. For all examples, multi-population parallel GP found accurate models for object systems, simultaneously identified structures and parameters. In comparison with traditional single-population GP, multi-population GP showed a more competitive performance in avoiding premature convergence, and was much more efficient in searching for good models for object systems. From identification results, it can be concluded that multi-population parallel GP is good at handling complex stochastic nonlinear system identification problems and is superior to other existing identification methods.

Published in:

Control and Decision Conference, 2009. CCDC '09. Chinese

Date of Conference:

17-19 June 2009