By Topic

Feedforward simple control technique for on-chip all-digital three-phase AC/DC power-MOSFET converter with least components

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Chen, J.-J. ; Dept. of Electron. Eng., Nat. Taipei Univ. of Technol., Taipei, Taiwan ; Kung, C.-M. ; Hwang, Y.-S.

A novel simple control technique for on-chip all-digital three-phase alternating current to direct current (AC/DC) power-metal oxide semiconductor field-effect transistors (MOSFET) converter with least components, which is employed to obtain small current and DC output voltage ripples as well as excellent performance, and using a feedforward simple control method for DC output voltage regulation is proposed. The proposed all-digital feedforward controller has the features of low cost, simple control, fast response, independence of load parameters and the switching frequency, it has no need for compensation, and high stability characteristics; moreover, the proposed controller consists of three operation amplifiers and few digital logic gates that are directly applied to the three-phase converter. The power-MOSFETs are also known as power switches, whose control signals are derived from the proposed all-digital feedforward controller. Instead of thyristors or diodes, the application of power-MOSFETs can reduce the loss of AC/DC converter that is proper to the power supply system. The input stage of an AC/DC converter functions as a rectifier and the output stage is a low pass inductor capacitor (LC) filter. The input AC sources may originate from miniature three-phase AC generator or low-power three-phase DC/AC inverter. The maximum output loading current is 0.8 A and the maximum DC output ripple is less than 200 mV. The prototype of the proposed AC/DC converter has been fabricated with Taiwan Semiconductor Manufacturing Company (TSMC) 0.35 mum 2P4M complementary MOS (CMOS) processes. The total chip area is 2.333 1.960 mm2. The proposed AC/DC converter is suitable for the following three power systems with the low power, DC/DC converter, low-dropout linear regulator and switch capacitor. Finally, the theoretical analysis is verified to be correct by simulations and experiments.

Published in:

Circuits, Devices & Systems, IET  (Volume:3 ,  Issue: 4 )