By Topic

Evaluation of a Warm-Thermistor Flow Sensor for Use in Automatic Seepage Meters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Skinner, A.J. ; Meas. Eng. Australia, Magill, SA, Australia ; Lambert, M.F.

A warm-thermistor flow sensor is evaluated for use in an automatic seepage meter measuring very slow groundwater inflows into open water bodies. A novel control circuit allows a single self-referencing thermistor to operate with a constant heat output of 36.8 mW, while monitoring the thermistor's internal temperature TS and TF under still-water and flow conditions respectively. The resultant temperature difference TS-TF is the output signal from the instrument. This device is particularly sensitive to very slow fluid flows in the range 0.03 to 3 mm/s, where buoyancy problems have traditionally prevented the use of warm-thermistor flow meters. For flow speeds below 3 mm/s the sensor response was shown in the laboratory to be nearly linear with no offset term. Two flow-calibration setups were investigated; a precision plunging-probe apparatus and a single-step flow calibration system based upon a Hagen-Poiseuille flow regulator and a vertical standpipe. A numerical (CFD) model of the spherical thermistor agreed well with the two experimental calibration procedures over the flow range between 0 and 3 mm/s. The theoretical model - based on the Peclet number - fits the CFD model well between 3 and 100 mm/s, but does not hold true in the buoyancy range below 3 mm/s. For a seepage meter funnel having a bell-to-throat area ratio of 2964, groundwater flow velocities as low as 0.01 mum/s (0.9 mm/day) could be measured using this sensor.

Published in:

Sensors Journal, IEEE  (Volume:9 ,  Issue: 9 )