By Topic

Feature selection and construction for the discrimination of neurodegenerative diseases based on gait analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mingjing Yang ; Fac. of Comput. & Eng., Univ. of Ulster, UK ; Huiru Zheng ; Haiying Wang ; McClean, S.

Gait disorder is one symptom of neurodegenerative disease. Using wearable motion sensors to monitor the motor function of patients with neurodegenerative disease has attracted more attention. Research has shown that machine learning techniques can be applied to the classification of neurodegenerative diseases from the gait data recorded by footswitches. In order to identify the most valuable features from 10 raw temporal variables extracted from gait cycles to improve the classification performance, we examine four types of feature selection and construction methods, namely, maximum signal-to-noise ratio based feature selection method, maximum signal-to-noise ratio combined with minimum correlation based feature selection method, maximum prediction power combined with minimum correlation based feature selection method and principal component analysis. Results show that using a set of four features, a relatively high prediction performance has been achieved with classification accuracies ranging from 79.04% to 93.96%. The continual increase of the number of features does not significantly contribute to the improvement of classification performance. This is consistent with clustering-based feature analysis.

Published in:

Pervasive Computing Technologies for Healthcare, 2009. PervasiveHealth 2009. 3rd International Conference on

Date of Conference:

1-3 April 2009