By Topic

Ground-Based Microwave Investigations of Forest Plots in Italy

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Santi, E. ; Ist. di Fis. Applicata Nello Carrara, Consiglio Naz. delle Ric., Firenze, Italy ; Paloscia, S. ; Pampaloni, P. ; Pettinato, S.

In this paper, we report the results of an experimental study aimed toward investigating microwave emission from forests. The experiment was carried out in 2006 on two forest stands of poplar (Populus alba) and pine (Pinus italica), using ground-based microwave radiometers at the L-, C-, X-, Ku-, and Ka-bands, in H and V polarizations. Measurements on poplar were performed on different dates and at different incidence and azimuth angles, looking downward (from the top of trees and from below the crown) and upward (from the soil level). Only one downward-looking measurement was carried out over a pine plot with dry soil in April. All the remote sensing measurements were complemented with ??ground-truth?? data. The collected experimental data made it possible to quantify the spectral signatures of poplar, as well as the variation of angular trends of brightness temperature in different seasons of the year. The sensitivity of L-band emission to soil properties and leaf biomass was also investigated. Moreover, the measurements on poplar, combined with a simple radiative transfer model (the so-called omega-tau equation), allowed estimating the transmissivity of the canopy with and without leaves. The analysis of data has shown that for the observed forest type, the sensitivity to soil moisture under defoliated trees can be noted at both the L- and C-bands.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:47 ,  Issue: 9 )