By Topic

Active Learning of Plans for Safety and Reachability Goals With Partial Observability

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wonhong Nam ; College of Information Sciences and Technology, Pennsylvania State University, University Park, PA, USA ; Rajeev Alur

Traditional planning assumes reachability goals and/or full observability. In this paper, we propose a novel solution for safety and reachability planning with partial observability. Given a planning domain, a safety property, and a reachability goal, we automatically learn a safe permissive plan to guide the planning domain so that the safety property is not violated and that can force the planning domain to eventually reach states that satisfy the reachability goal, regardless of how the planning domain behaves. Our technique is based on the active learning of regular languages and symbolic model checking. The planning method first learns a safe plan using the L * algorithm, which is an efficient active learning algorithm for regular languages. We then check whether the safe plan learned is also permissive by Alternating-time Temporal Logic (ATL) model checking. If the plan is permissive, it is indeed a safe permissive plan. Otherwise, we identify and add a safe string to converge a safe permissive plan. We describe an implementation of the proposed technique and demonstrate that our tool can efficiently construct safe permissive plans for four sets of examples.

Published in:

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)  (Volume:40 ,  Issue: 2 )