By Topic

Nonlinear Bayesian Filtering Using the Unscented Linear Fractional Transformation Model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Syed Ahmed Pasha ; Sch. of Electr. Eng. & Telecommun., Univ. of New South Wales, Sydney, NSW, Australia ; Hoang Duong Tuan ; Ba-Ngu Vo

For nonlinear state space model involving random variables with arbitrary probability distributions, the state estimation given a sequence of observations is based on an appropriate criterion such as the minimum mean square error (MMSE). This leads to linear approximation in the state space of the extended Kalman filter (EKF) and the unscented Kalman filter (UKF), which work reasonably well only for mildly nonlinear systems. We propose a Bayesian filtering technique based on the MMSE criterion in the framework of the virtual linear fractional transformation (LFT) model, which is characterized by a linear part and a simple nonlinear structure in the feedback loop. LFT is an exact representation for any differentiable nonlinear mapping, so the virtual LFT model is amenable to a wide range of nonlinear systems. Simulation results demonstrate that the proposed filtering technique gives better approximation and tracking performance than standard methods like the UKF. Furthermore, for highly nonlinear systems where UKF diverges, the LFT model estimates the conditional mean with reasonable accuracy.

Published in:

IEEE Transactions on Signal Processing  (Volume:58 ,  Issue: 2 )