Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

High-Gain Hybrid Dielectric Resonator Antenna for Millimeter-Wave Applications: Design and Implementation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Perron, A. ; Inst. Nat. de la Rech. Sci. (INRS), Montreal, QC, Canada ; Denidni, T.A. ; Sebak, A.

A new low-cost and high-gain microstrip/dielectric resonator hybrid antenna is described for short-range millimeter-wave communication systems operating in the 57-65 GHz frequency band. The impedance bandwidth (VSWR < 2) of the proposed antenna is wide enough to entirely cover this portion of unlicensed spectrum (ap 5%). Furthermore, the measured high gain (11.9 plusmn 0.9 dB) is fairly constant across the operating band. A study of the electric and magnetic fields inside the hybrid structure concludes that the excitation of a higher-order mode inside the dielectric resonator (namely the HEM15delta hybrid mode) is responsible for the improved gain since the electrical size of the antenna is increased. In order to validate the proposed design, theoretical calculations and measurements from a fabricated prototype are provided.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:57 ,  Issue: 10 )