By Topic

Design and Performance Tuning of Sliding-Mode Controller for High-Speed and High-Accuracy Positioning Systems in Disturbance Observer Framework

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bong Keun Kim ; Intell. Syst. Res. Inst., Nat. Inst. of Adv. Ind. Sci. & Technol., Tsukuba, Japan ; Wan Kyun Chung ; Ohba, K.

The tuning method of controllers can be used for effectively determining the overall performance of positioning systems. In particular, this method is highly effective in the case of high-speed and high-accuracy positioning systems. In this paper, a sliding-mode controller that uses one of the well-known approaches of robust control methodology is designed for high-speed positioning systems that require a high-accuracy performance. A performance-tuning method based on a disturbance observer (DOB) structure is also proposed. First, a generalized disturbance attenuation framework named robust internal-loop compensator (RIC) is introduced, and a sliding-mode controller based on a Lyapunov redesign is analyzed in the RIC framework. Then, the DOB properties of the sliding-mode controller are presented, and it is shown that the performance of the closed-loop system with a sliding-mode controller can be tuned up by using the structural characteristics of the DOB. These results make the design of an enhanced sliding-mode controller possible. Finally, the proposed algorithm is experimentally verified and discussed with two positioning systems. Experimental results show the effectiveness and the robustness of the proposed scheme.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:56 ,  Issue: 10 )