By Topic

On Wireless Links for Vehicle-to-Infrastructure Communications

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Pavle Belanovic ; Technical University of Madrid (UPM), Spain ; Danilo Valerio ; Alexander Paier ; Thomas Zemen
more authors

Future intelligent transportation systems (ITS) will necessitate wireless vehicle-to-infrastructure (V2I) communications. This wireless link can be implemented by several technologies, such as digital broadcasting, cellular communication, or dedicated short-range communication (DSRC) systems. Analyses of the coverage and capacity requirements are presented when each of the three systems is used to implement the V2I link. We show that digital broadcasting systems are inherently capacity limited and do not appropriately scale. Furthermore, we show that the Universal Mobile Telecommunications System (UMTS) can implement the V2I link using either a dedicated channel (DCH) or a multimedia broadcast/multicast service (MBMS), as well as a hybrid approach. In every case, such V2I systems scale well and are capacity limited. We also show that wireless access in vehicular environment (WAVE) systems scale well, provide ample capacity, and are coverage limited. Finally, a direct quantitative comparison of the presented systems is given to show their scaling behavior with the number of users and the geographical coverage.

Published in:

IEEE Transactions on Vehicular Technology  (Volume:59 ,  Issue: 1 )