By Topic

A Novel Architecture for Block Interleaving Algorithm in MB-OFDM Using Mixed Radix System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Youngsun Han ; Sch. of Electr. Eng., Korea Univ., Seoul, South Korea ; Harliman, P. ; Seon Wook Kim ; Jong-Kook Kim
more authors

In this paper, we present a novel architecture of a block interleaver in MB-OFDM systems based on Mixed Radix System (MRS). We prove mathematically that the proposed architecture can support bit permutations in the interleaving process. The hierarchical property of our proposed MRS-based design methodology allows the proposed architecture to support all the required data rates in the MB-OFDM systems with simple modular design. Furthermore, the same design to be used for the interleaver can also be used for the operation of de-interleaving, which reduces the implementation complexity significantly. The latency of our architecture is as low as 6 MB-OFDM symbols. In addition, when comparing our proposed architecture with the conventional approach, we are able to reduce the implementation complexity by 85.5%, 69.4%, and 40.3% for 80, 200, and 480 Mb/s data rates, respectively, while improving our operating maximum clock frequency by more than 3.3 times over the conventional design. We also show that the power consumption is reduced by 87.4%, 73.6%, and 39.8% for 80, 200, and 480 Mb/s, respectively.

Published in:

Very Large Scale Integration (VLSI) Systems, IEEE Transactions on  (Volume:18 ,  Issue: 6 )