By Topic

Optimisation techniques for a hysteresis current controller to minimise torque ripple in switched reluctance motors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gobbi, R. ; Fac. of Eng., Multimedia Univ., Cyberjaya, Malaysia ; Ramar, K.

The switched reluctance (SR) motor has many benefits owing to its low cost, simple design, rugged construction and comparatively high torque-to-mass ratio. Unlike DC and induction motors, the SR motor is intended to operate in deep magnetic saturation to increase the output power density. Because of the saturation effect and the variation of magnetic reluctance with respect to rotor position, all the relevant characteristics of the machine are highly non-linear functions of both rotor position and phase current. The ultimate outcome of all these non-linearities is that the generated torque contains significant ripples. The non-linearities in the SR motor have been extensively studied and many control strategies to reduce the generated torque ripples have been proposed in the literature. Modulation of phase current profile for generating torque in the SR motor with minimum ripples was the focus of most of the research. However, the main challenge to minimise the torque ripple is to design a current controller that is able to track the modulated phase current. In this work, new techniques to optimise the widely used hysteresis current controller are studied, and experimental verifications under closed-loop speed control with the modulated reference current data are presented. The experimental results indicate that the torque ripple is reduced to lie within 5% of the desired steady torque using the proposed optimisation techniques.

Published in:

Electric Power Applications, IET  (Volume:3 ,  Issue: 5 )