Cart (Loading....) | Create Account
Close category search window
 

Coupled linear parameter varying and flatness-based approach for space re-entry vehicles guidance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zerar, M. ; CreSTIC-URCA Lab., Reims Univ., Reims, France ; Cazaurang, F. ; Zolghadri, A.

An linear parameter varying guidance method for the hypersonic phase of a space re-entry vehicle is presented. The suggested guidance scheme, relying on flatness approach, is applied to the non-linear model of the European Atmospheric Re-entry Demonstrator. It is shown that the overall guidance scheme achieves robust stability and performance, even in the presence of entry point kinematics dispersions. The design problem is formulated and solved using a finite set of linear matrix inequalities. Finally, Monte Carlo simulation results are presented to demonstrate the effectiveness of the suggested approach.

Published in:

Control Theory & Applications, IET  (Volume:3 ,  Issue: 8 )

Date of Publication:

August 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.