By Topic

Bounded Dataflow Networks and Latency-Insensitive circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Vijayaraghavan, M. ; Computation Structures Group, Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, USA ; Arvind

We present a theory for modular refinement of Synchronous Sequential Circuits (SSMs) using Bounded Dataflow Networks (BDNs). We provide a procedure for implementing any SSM into an LI-BDN, a special class of BDNs with some good compositional properties. We show that the Latency-Insensitive property of LI-BDNs is preserved under parallel and iterative composition of LI-BDNs. Our theory permits one to make arbitrary cuts in an SSM and turn each of the parts into LI-BDNs without affecting the overall functionality. We can further refine each constituent LI-BDN into another LI-BDN which may take different number of cycles to compute. If the constituent LI-BDN is refined correctly we guarantee that the overall behavior would be cycle-accurate with respect to the original SSM. Thus one can replace, say a 3-ported register file in an SSM by a one-ported register file without affecting the correctness of the SSM. We give several examples to show how our theory supports a generalization of previous techniques for Latency-Insensitive refinements of SSMs.

Published in:

Formal Methods and Models for Co-Design, 2009. MEMOCODE '09. 7th IEEE/ACM International Conference on

Date of Conference:

13-15 July 2009