Scheduled System Maintenance:
On May 6th, system maintenance will take place from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). During this time, there may be intermittent impact on performance. We apologize for the inconvenience.
By Topic

Bounded Dataflow Networks and Latency-Insensitive circuits

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

The purchase and pricing options are temporarily unavailable. Please try again later.
2 Author(s)
Vijayaraghavan, M. ; Computation Structures Group, Computer Science and Artificial Intelligence Lab, Massachusetts Institute of Technology, USA ; Arvind

We present a theory for modular refinement of Synchronous Sequential Circuits (SSMs) using Bounded Dataflow Networks (BDNs). We provide a procedure for implementing any SSM into an LI-BDN, a special class of BDNs with some good compositional properties. We show that the Latency-Insensitive property of LI-BDNs is preserved under parallel and iterative composition of LI-BDNs. Our theory permits one to make arbitrary cuts in an SSM and turn each of the parts into LI-BDNs without affecting the overall functionality. We can further refine each constituent LI-BDN into another LI-BDN which may take different number of cycles to compute. If the constituent LI-BDN is refined correctly we guarantee that the overall behavior would be cycle-accurate with respect to the original SSM. Thus one can replace, say a 3-ported register file in an SSM by a one-ported register file without affecting the correctness of the SSM. We give several examples to show how our theory supports a generalization of previous techniques for Latency-Insensitive refinements of SSMs.

Published in:

Formal Methods and Models for Co-Design, 2009. MEMOCODE '09. 7th IEEE/ACM International Conference on

Date of Conference:

13-15 July 2009