By Topic

Blanket SMT With In Situ N2 Plasma Treatment on the \langle \hbox {100} \rangle Wafer for the Low-Cost Low-Power Technology Application

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

17 Author(s)
Jun Yuan ; IBM Semicond. R&D Center, Hopewell Junction, NY, USA ; Chan, V. ; Rovedo, N. ; Sardesai, V.
more authors

PMOS degradation with the blanket-stress-memory-technique (SMT) nitride layer on the (100) wafer with ?100? orientation has been observed, and the degradation mechanism is examined. The boron-doping loss from both the PMOS gate and the source/drain region during the SMT process is the root cause. In situ N2 plasma treatment before the SMT layer deposition has been implemented for the first time to recover PMOS performance on the ?100? wafer by reducing the boron-doping loss from the gate and the source/drain region. Reliability like PMOS NBTI has been examined, and no degradation is observed.

Published in:

Electron Device Letters, IEEE  (Volume:30 ,  Issue: 9 )