Cart (Loading....) | Create Account
Close category search window
 

Comparative Study of Fuel-Cell Vehicle Hybridization with Battery or Supercapacitor Storage Device

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Thounthong, P. ; Dept. of Teacher Training in Electr. Eng., King Mongkut''s Univ. of Technol. North Bangkok, Bangkok, Thailand ; Chunkag, V. ; Sethakul, P. ; Davat, B.
more authors

This paper studies the impact of fuel-cell (FC) performance and control strategies on the benefits of hybridization. One of the main weak points of the FC is slow dynamics dominated by a temperature and fuel-delivery system (pumps, valves, and, in some cases, a hydrogen reformer). As a result, fast load demand will cause a high voltage drop in a short time, which is recognized as a fuel-starvation phenomenon. Therefore, to employ an FC in vehicle applications, the electrical system must have at least an auxiliary power source to improve system performance when electrical loads demand high energy in a short time. The possibilities of using a supercapacitor or a battery bank as an auxiliary source with an FC main source are presented in detail. The studies of two hybrid power systems for vehicle applications, i.e., FC/battery and FC/supercapacitor hybrid power sources, are explained. Experimental results with small-scale devices (a polymer electrolyte membrane FC of 500 W, 40 A, and 13 V; a lead-acid battery module of 33 Ah and 48 V; and a supercapacitor module of 292 F, 500 A, and 30 V) in a laboratory authenticate that energy-storage devices can assist the FC to meet the vehicle power demand and help achieve better performance, as well as to substantiate the excellent control schemes during motor-drive cycles.

Published in:

Vehicular Technology, IEEE Transactions on  (Volume:58 ,  Issue: 8 )

Date of Publication:

Oct. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.