By Topic

Non-Negative Matrix Factorization for Semisupervised Heterogeneous Data Coclustering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Yanhua Chen ; Wayne State University, Detroit ; Lijun Wang ; Ming Dong

Coclustering heterogeneous data has attracted extensive attention recently due to its high impact on various important applications, such us text mining, image retrieval, and bioinformatics. However, data coclustering without any prior knowledge or background information is still a challenging problem. In this paper, we propose a Semisupervised Non-negative Matrix Factorization (SS-NMF) framework for data coclustering. Specifically, our method computes new relational matrices by incorporating user provided constraints through simultaneous distance metric learning and modality selection. Using an iterative algorithm, we then perform trifactorizations of the new matrices to infer the clusters of different data types and their correspondence. Theoretically, we prove the convergence and correctness of SS-NMF coclustering and show the relationship between SS-NMF with other well-known coclustering models. Through extensive experiments conducted on publicly available text, gene expression, and image data sets, we demonstrate the superior performance of SS-NMF for heterogeneous data coclustering.

Published in:

IEEE Transactions on Knowledge and Data Engineering  (Volume:22 ,  Issue: 10 )