By Topic

Communication-Aware Load Balancing for Parallel Applications on Clusters

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xiao Qin ; Dept. of Comput. Sci. & Software Eng., Auburn Univ., Auburn, AL, USA ; Hong Jiang ; Manzanares, A. ; Xiaojun Ruan
more authors

Cluster computing has emerged as a primary and cost-effective platform for running parallel applications, including communication-intensive applications that transfer a large amount of data among the nodes of a cluster via the interconnection network. Conventional load balancers have proven effective in increasing the utilization of CPU, memory, and disk I/O resources in a cluster. However, most of the existing load-balancing schemes ignore network resources, leaving an opportunity to improve the effective bandwidth of networks on clusters running parallel applications. For this reason, we propose a communication-aware load-balancing technique that is capable of improving the performance of communication-intensive applications by increasing the effective utilization of networks in cluster environments. To facilitate the proposed load-balancing scheme, we introduce a behavior model for parallel applications with large requirements of network, CPU, memory, and disk I/O resources. Our load-balancing scheme can make full use of this model to quickly and accurately determine the load induced by a variety of parallel applications. Simulation results generated from a diverse set of both synthetic bulk synchronous and real parallel applications on a cluster show that our scheme significantly improves the performance, in terms of slowdown and turn-around time, over existing schemes by up to 206 percent (with an average of 74 percent) and 235 percent (with an average of 82 percent), respectively.

Published in:

Computers, IEEE Transactions on  (Volume:59 ,  Issue: 1 )