By Topic

Measurement of Broadband Temperature-Dependent Ultrasonic Attenuation and Dispersion Using Photoacoustics

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Bradley E. Treeby ; Dept. of Med. Phys. & Bioeng., Univ. Coll. London, London, UK ; Benjamin T. Cox ; Edward Z. Zhang ; Sarah K. Patch
more authors

The broadband ultrasonic characterization of biological fluids and tissues is important for the continued development and application of high-resolution ultrasound imaging modalities. Here, a photoacoustic technique for the transmission measurement of temperature-dependent ultrasonic attenuation and dispersion is described. The system uses a photoacoustic plane wave source constructed from a polymethylmethacrylate substrate with a thin optically absorbent layer. Broadband ultrasonic waves are generated by illuminating the absorbent layer with nanosecond pulses of laser light. The transmitted ultrasound waves are detected by a planar 7-mum high-finesse Fabry-Perot interferometer. Temperature- induced thickness changes in the Fabry-Perot interferometer are tracked to monitor the sample temperature and maintain the sensor sensitivity. The measured -6-dB bandwidth for the combined source and sensor is 1 to 35 MHz, with an attenuation corrected signal level at 100 MHz of -10 dB. The system is demonstrated through temperature-dependent ultrasound measurements in castor oil and olive oil. Power law attenuation parameters are extracted by fitting the experimental attenuation data to a frequency power law while simultaneously fitting the dispersion data to the corresponding Kramers-Kronig relation. The extracted parameters are compared with other calibration measurements previously reported in the literature.

Published in:

IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control  (Volume:56 ,  Issue: 8 )