By Topic

Analysis of the Thermal Balance Characteristics for Multiple-Connected Piezoelectric Transformers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Joung-Hu Park ; Dept. of Electr. Eng., Seoul Nat. Univ., Seoul, South Korea ; Bo-Hyung Cho ; Sung-Jin Choi ; Sang-min Lee

Because the amount of power that a piezoelectric transformer (PT) can handle is limited, multiple connections of PTs are necessary for the power-capacity improvement of PT-applications. In the connection, thermal imbalance between the PTs should be prevented to avoid the thermal runaway of each PT. The thermal balance of the multiple-connected PTs is dominantly affected by the electrothermal characteristics of individual PTs. In this paper, the thermal balance of both parallel-parallel and parallel-series connections are analyzed by electrical model parameters. For quantitative analysis, the thermal-balance effects are estimated by the simulation of the mechanical loss ratio between the PTs. The analysis results show that with PTs of similar characteristics, the parallel-series connection has better thermal balance characteristics due to the reduced mechanical loss of the higher temperature PT. For experimental verification of the analysis, a hardware-prototype test of a Cs-Lp type 40 W adapter system with radial-vibration mode PTs has been performed.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:56 ,  Issue: 8 )