Cart (Loading....) | Create Account
Close category search window
 

Challenges for GMPLS lightpath provisioning in transparent optical networks: Wavelength constraints in routing and signaling

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Muoz, R. ; Centre Tecnol. de Telecomunicacions de Catalunya (CTTC), Castelldefels, Spain ; Martinez, R. ; Casellas, R.

GMPLS has introduced several enhancements to the MPLS-TE routing and signaling control plane protocols to handle dynamic lightpath provisioning in wavelength-routed networks. Specifically, the GMPLS signaling protocol has been enhanced to support two new provisioning functionalities, namely, the minimization of the setup delay, and the setup of bidirectional connection requests. In both cases, the source node must perform a wavelength allocation for either minimizing the setup delay (i.e., the suggested label) or requesting a bidirectional connection (i.e., the upstream label). However, these GMPLS provisioning functionalities present important deficiencies when applied to wavelength-routed networks with the wavelength continuity constraint, degrading the network performance considerably. The reason is that the standard GMPLS routing protocols flood link attributes only at bandwidth granularity, that is, no per-wavelength channel granularity is disseminated. Therefore, the source node is unable to perform an optimal wavelength assignment that fulfils the wavelength continuity constraint along the complete route toward the destination. In this article we present and experimentally evaluate an enhanced routing-based solution in the ADRENALINE testbed to handle the wavelength continuity constraint.

Published in:

Communications Magazine, IEEE  (Volume:47 ,  Issue: 8 )

Date of Publication:

August 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.