Scheduled Maintenance on April 29th, 2016:
IEEE Xplore will be unavailable for approximately 1 hour starting at 11:30 AM EDT. We apologize for the inconvenience.
By Topic

A neural networks algorithm for inferring drug gene regulatory networks from microarray time-series with missing transcription factors information

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Alexandru George Floares ; SAIA - Solutions of Artificial Intelligence Applications, Cluj-Napoca, Romania

Mathematical modeling gene regulatory networks is important for understanding and controlling them, with various drugs and their dosage regimens. The ordinary differential equations approach is sensible but also very difficult. Our reverse engineering algorithm (RODES), based on neural networks feedback linearization and genetic programming, takes as inputs high-throughput (e.g., microarray) time series data and automatically infer an accurate ordinary differential equations model. The algorithm decouples the systems of differential equations, reducing the problem to that of revere engineering individual algebraic equations, and is able to deal with missing information, reconstructing the temporal series of the transcription factors or drug related compounds which are usually missing in microarray experiments. It is also able to incorporate common a priori knowledge. To our knowledge, this is the first realistic reverse engineering algorithm, based on genetic programming and neural networks, applicable to large gene networks.

Published in:

2009 International Joint Conference on Neural Networks

Date of Conference:

14-19 June 2009