By Topic

Tree structures with attentive objects for image classification using a neural network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Hong Fu ; Center for Multimedia Signal Processing, Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong ; Shuya Zhang ; Zheru Chi ; David Dagan Feng
more authors

This paper presents an image classification method based on a neural network model dealing with tree structures of attentive objects. Apart from regions provided by image segmentation, attentive objects, which are extracted from a segmented image by an attention-driven image interpretation algorithm, are used to construct the tree structure to represent an image. Three combinations of tree structures are investigated, including ldquoimage + attentive-object + segmentsrdquo, ldquoimage + attentive-objectsrdquo, as well as ldquoimage + segmentsrdquo. Structure based neural networks are trained to classify the images by using the back propagation through structure (BPTS) algorithm. Experimental results show that the ldquoimage + attentive objectsrdquo structure is more favorable, comparing with both the other two structures proposed by us and a start-of-art tree structure reported in the literature, in terms of classification rate and computational time.

Published in:

2009 International Joint Conference on Neural Networks

Date of Conference:

14-19 June 2009