By Topic

Music recommendation and query-by-content using Self-Organizing Maps

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dickerson, K.B. ; Comput. Sci. Dept., Brigham Young Univ., Provo, UT, USA ; Ventura, D.

The ever-increasing density of computer storage devices has allowed the average user to store enormous quantities of multimedia content, and a large amount of this content is usually music. Current search techniques for musical content rely on meta-data tags which describe artist, album, year, genre, etc. Query-by-content systems allow users to search based upon the acoustical content of the songs. Recent systems have mainly depended upon textual representations of the queries and targets in order to apply common string-matching algorithms. However, these methods lose much of the information content of the song and limit the ways in which a user may search. We have created a music recommendation system that uses self-organizing maps to find similarities between songs while preserving more of the original acoustical content. We build on the design of the recommendation system to create a musical query-by-content system. We discuss the weaknesses of the naive solution and then implement a quasi-supervised design and discuss some preliminary results.

Published in:

Neural Networks, 2009. IJCNN 2009. International Joint Conference on

Date of Conference:

14-19 June 2009