By Topic

A modified sparse distributed memory model for extracting clean patterns from noisy inputs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Hongying Meng ; Dept. of Comput. & Inf., Univ. of Lincoln, Lincoln, UK ; Appiah, K. ; Hunter, A. ; Shigang Yue
more authors

The sparse distributed memory (SDM) proposed by Kanerva provides a simple model for human long-term memory, with a strong underlying mathematical theory. However, there are problematic features in the original SDM model that affect its efficiency and performance in real world applications and for hardware implementation. In this paper, we propose modifications to the SDM model that improve its efficiency and performance in pattern recall. First, the address matrix is built using training samples rather than random binary sequences. This improves the recall performance significantly. Second, the content matrix is modified using a simple tri-state logic rule. This reduces the storage requirements of the SDM and simplifies the implementation logic, making it suitable for hardware implementation. The modified model has been tested using pattern recall experiments. It is found that the modified model can recall clean patterns very well from noisy inputs.

Published in:

Neural Networks, 2009. IJCNN 2009. International Joint Conference on

Date of Conference:

14-19 June 2009