By Topic

Analysis and synthesis of associative memories based on Brain-State-in-a-Box neural networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhigang Zeng ; Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China ; Jun Wang

In this paper, a design procedure is presented for synthesizing associative memories based on the brain-state-in-a-box neural network model. The theoretical analysis herein guarantees that the desired memory patterns are stored as asymptotically stable equilibrium points with very few spurious states. In order to avoid extensive computation, learning and forgetting are utilized by adding patterns to be stored as asymptotically stable equilibrium points to an existing set of stored patterns and deleting specified patterns from a given set of stored patterns without affecting the rest in a given network. Furthermore, the number of the memorized patterns in a designed brain-state-in-a-box neural network model can be made much more than that of neurons. Simulation results demonstrate the validity and characteristics of the proposed approach.

Published in:

2009 International Joint Conference on Neural Networks

Date of Conference:

14-19 June 2009