By Topic

Solving convex optimization problems using recurrent neural networks in finite time

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Long Cheng ; Key Lab. of Complex Syst. & Intell. Sci., Chinese Acad. of Sci., Beijing, China ; Zeng-Guang Hou ; Homma, N. ; Min Tan
more authors

A recurrent neural network is proposed to deal with the convex optimization problem. By employing a specific nonlinear unit, the proposed neural network is proved to be convergent to the optimal solution in finite time, which increases the computation efficiency dramatically. Compared with most of existing stability conditions, i.e., asymptotical stability and exponential stability, the obtained finite-time stability result is more attractive, and therefore could be considered as a useful supplement to the current literature. In addition, a switching structure is suggested to further speed up the neural network convergence. Moreover, by using the penalty function method, the proposed neural network can be extended straightforwardly to solving the constrained optimization problem. Finally, the satisfactory performance of the proposed approach is illustrated by two simulation examples.

Published in:

Neural Networks, 2009. IJCNN 2009. International Joint Conference on

Date of Conference:

14-19 June 2009