By Topic

LS-SVM based neural controller as optimized by particle swarm algorithm using dual heuristic dynamic programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Si-Yao Fu ; School of Information and Engineering, the Central University of Nationalities. Beijing 100081, China ; Guo-Sheng Yang ; Zeng-Guang Hou

The dual heuristic programming (DHP) approach has a superior ability for solving approximate dynamic programming problems in adaptive critic designs (ACD). The common approaches applied in the DHP are design the multilayer feedforward neural networks (MLFNN) as the differential model of the plant for training the critic and action networks. However, the problems of overfitting and premature convergence to local optima usually pose great challenges in the practice of MLFNNs during the training procedure. In this paper a least squares support vector machine (LS-SVM) regressor optimized by particle swarm algorithm (PSO) is proposed for generating the control actions and the learning rules for the critic and action networks. PSO is introduced to select the LS-SVM's hyper-parameters. The introduction of the SVM based training mechanism imparts the developed algorithm with inherent capacity for combating the overfitting problem as well as showing relatively high efficiency in converging to the optima. Simulation on the balancing of a cart pole plant shows that the proposed learning strategy is verified as faster convergence and higher efficiency as compared to traditional BP based adaptive dynamic programming approaches.

Published in:

2009 International Joint Conference on Neural Networks

Date of Conference:

14-19 June 2009