By Topic

Gene expression data classification based on non-negative matrix factorization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Chun-Hou Zheng ; Coll. of Inf. & Commun. Technol., Qufu Normal Univ., Rizhao, China ; Ping Zhang ; Zhang, D. ; Xin-Xin Liu
more authors

With the advent of DNA microarrays, it is now possible to use the microarrays data for tumor classification. Yet previous works have not use the nonnegative information of gene expression data. In this paper, we propose a new method for tumor classification using gene expression data. In this method, we first select genes using nonnegative matrix factorization (NMF) and sparse NMF (SNMF). Then we extract features of the selected gene data by virtue of NMF and SNMF. At last, support vector machines (SVM) was applied to classify the tumor samples based on the extracted features. To better fit for classification aim, a modified SNMF algorithm is also proposed. The experimental results on three microarray datasets show that the method is efficient and feasible.

Published in:

Neural Networks, 2009. IJCNN 2009. International Joint Conference on

Date of Conference:

14-19 June 2009