By Topic

Online actor critic algorithm to solve the continuous-time infinite horizon optimal control problem

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kyriakos G. Vamvoudakis ; Automation and Robotics Research Institute, University of Texas at Arlington, 7300 Jack Newell Blvd. S., Fort Worth, 76118 USA ; Frank L. Lewis

In this paper we discuss an online algorithm based on policy iteration for learning the continuous-time (CT) optimal control solution with infinite horizon cost for nonlinear systems with known dynamics. We present an online adaptive algorithm implemented as an actor/critic structure which involves simultaneous continuous-time adaptation of both actor and critic neural networks. We call this dasiasynchronouspsila policy iteration. A persistence of excitation condition is shown to guarantee convergence of the critic to the actual optimal value function. Novel tuning algorithms are given for both critic and actor networks, with extra terms in the actor tuning law being required to guarantee closed-loop dynamical stability. The convergence to the optimal controller is proven, and stability of the system is also guaranteed. Simulation examples show the effectiveness of the new algorithm.

Published in:

2009 International Joint Conference on Neural Networks

Date of Conference:

14-19 June 2009