By Topic

FUNNet - A Novel Biologically-Inspired Routing Algorithm Based on Fungi

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xu Hao ; Sch. of Comput. & Creative Technol., Univ. of Abertay Dundee, Dundee, UK ; Ruth Falconer ; David Bradley ; John Crawford

Future data communication networks show three emerging trends: increasing size of networks, increasing traffic volumes and dynamic network topologies. Efficient network management solutions are required that are scalable, can cope with large, and increasing, traffic volumes and provide decentralised and adaptive routing strategies that cope with the dynamics of the network topology. Routing strategies are an important aspect of network management as they have a significant influence on the overall network performance. This paper introduces the preliminary studies for FUNNet, a new routing algorithm inspired by the kingdom of Fungi. Fungi form robust, resilient and responsive networks and these networks change topology as a consequence of changes in local conditions. Fungi are capable of expanding in size as they self-regulate and optimise the balance between exploration and exploitation which is dependent on the transport of the internal resource, i.e. dasiatrafficpsila, within the network. FUNNet exploits the biological processes that are responsible for simulating fungal networks in a bio-inspired routing protocol. The initial results are positive and suggest that fungal metaphors can improve network management, although further evaluation of more complex scenarios is required.

Published in:

Communication Theory, Reliability, and Quality of Service, 2009. CTRQ '09. Second International Conference on

Date of Conference:

20-25 July 2009