By Topic

Using Rough Set and Support Vector Machine for Network Intrusion Detection System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rung-Ching Chen ; Chaoyang Univ. of Technol., Wufeng, Taiwan ; Kai-Fan Cheng ; Ying-Hao Chen ; Chia-Fen Hsieh

The main function of IDS (intrusion detection system) is to protect the system, analyze and predict the behaviors of users. Then these behaviors will be considered an attack or a normal behavior. Though IDS has been developed for many years, the large number of return alert messages makes managers maintain system inefficiently. In this paper, we use RST (Rough Set Theory) and SVM (Support Vector Machine) to detect intrusions. First, RST is used to preprocess the data and reduce the dimensions. Next, the features selected by RST will be sent to SVM model to learn and test respectively. The method is effective to decrease the space density of data. The experiments will compare the results with different methods and show RST and SVM schema could improve the false positive rate and accuracy.

Published in:

Intelligent Information and Database Systems, 2009. ACIIDS 2009. First Asian Conference on

Date of Conference:

1-3 April 2009