By Topic

SiO _2 Barriers for Increasing Gain Events in Solid-State Impact-Ionization Multipliers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Michael S. Johnson ; Electr. & Comput. Eng. Dept., Brigham Young Univ., Provo, UT, USA ; Joshua L. Beutler ; Alan P. Nelson ; Yuihin Tseung
more authors

A solid-state impact-ionization multiplier (SIM) was designed to amplify signals from arbitrary current sources through impact ionization. A primary application is amplification of signals produced by photodiodes. Photodiodes made from any semiconductor can be wired directly to the SIM's injection node. Planar versions of the SIM suffer from nonideal impact ionization efficiency as a result of injected carriers drifting through the device's depletion region to the output electrode without passing through the highest electric field regions and undergoing ionization events. Low impact ionization efficiency can lead to an increased excess noise factor, higher temperature sensitivity, and higher voltage sensitivity (rate of gain change with respect to applied voltage). This paper describes increasing SIM ionization efficiencies by introducing an insulator between the SIM's injection and output electrodes, effectively directing the carriers into the highest electric field. This method has shown to greatly increase the impact ionization efficiency in simulation and experimental results. Ionization efficiency improvements are demonstrated primarily through decreases in voltage sensitivity.

Published in:

IEEE Journal of Quantum Electronics  (Volume:45 ,  Issue: 9 )