Cart (Loading....) | Create Account
Close category search window
 

Segmented Principal Component Analysis for Parallel Compression of Hyperspectral Imagery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Qian Du ; Dept. of Electr. & Comput. Eng., Mississippi State Univ., Starkville, MS, USA ; Wei Zhu ; He Yang ; Fowler, J.E.

Principal component analysis (PCA) is widely used for spectral decorrelation in the JPEG2000 compression of hyperspectral imagery. However, due to the data-dependent nature of principal components, the principal component transform matrix is stored in the JPEG2000 bitstream, constituting an overhead that is often negligible if the spatial size of the image is large. However, in parallel compression in which the data set is partitioned to multiple independent processing nodes, the overhead may no longer remain negligible. It is shown that a segmented approach to PCA can greatly mitigate the detrimental effects of transform-matrix overhead and can outperform wavelet-based decorrelation which entails no such overhead.

Published in:

Geoscience and Remote Sensing Letters, IEEE  (Volume:6 ,  Issue: 4 )

Date of Publication:

Oct. 2009

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.