By Topic

Multilayer SOM With Tree-Structured Data for Efficient Document Retrieval and Plagiarism Detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tommy W. S. Chow ; Dept. of Electron. Eng., City Univ. of Hong Kong, Kowloon, China ; M. K. M. Rahman

This paper proposes a new document retrieval (DR) and plagiarism detection (PD) system using multilayer self-organizing map (MLSOM). A document is modeled by a rich tree-structured representation, and a SOM-based system is used as a computationally effective solution. Instead of relying on keywords/lines, the proposed scheme compares a full document as a query for performing retrieval and PD. The tree-structured representation hierarchically includes document features as document, pages, and paragraphs. Thus, it can reflect underlying context that is difficult to acquire from the currently used word-frequency information. We show that the tree-structured data is effective for DR and PD. To handle tree-structured representation in an efficient way, we use an MLSOM algorithm, which was previously developed by the authors for the application of image retrieval. In this study, it serves as an effective clustering algorithm. Using the MLSOM, local matching techniques are developed for comparing text documents. Two novel MLSOM-based PD methods are proposed. Detailed simulations are conducted and the experimental results corroborate that the proposed approach is computationally efficient and accurate for DR and PD.

Published in:

IEEE Transactions on Neural Networks  (Volume:20 ,  Issue: 9 )