By Topic

Low-Profile Folded Monopoles With Embedded Planar Metamaterial Phase-Shifting Lines

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Kokkinos, T. ; Labs. Ireland, Alcatel-Lucent, Dublin, Ireland ; Feresidis, A.P.

This paper presents the analysis, design and measurement of novel, low-profile, small-footprint folded monopoles employing planar metamaterial phase-shifting lines. These lines are composed of fully-printed spiral elements, that are inductively coupled and hence exhibit an effective high- mu property. An equivalent circuit for the proposed structure is presented, validating the operating principles of the antenna and the metamaterial line. The impact of the antenna profile and the ground plane size on the antenna performance is investigated using accurate full-wave simulations. A lambda/9 antenna prototype, designed to operate at 2.36 GHz, is fabricated and tested on both electrically large and small ground planes, achieving on average 80% radiation efficiency, 5% (110 MHz) and 2.5% (55 MHz) -10 dB measured bandwidths, respectively, and fully omnidirectional, vertically polarized, monopole-type radiation patterns.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:57 ,  Issue: 10 )